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UNIT-IV 

Syllabus: 

Computer Arithmetic: Addition and subtraction, Multiplication algorithms, division algorithms, 

floating-point arithmetic operations. 

 

Introduction: 

 

 Arithmetic instructions in digital computers manipulate data to produce results necessary 

for the solution of computational problems. 

 These instructions perform arithmetic calculations and are responsible for the bulk of 

activity involved in processing data in a computer. 

 The four basic arithmetic operations are addition, subtraction, multiplication and 

division. From these four bulk operations, it is possible to formulate other arithmetic 

functions and solve scientific problems by means of numerical analysis methods. 

 An arithmetic processor is the part of a processor unit that executes arithmetic operations. 

The data type assumed to reside in processor registers during the execution of an 

arithmetic instruction is specified in the definition of the instruction. A:n arithmetic 

instruction may specify binary or decimal data, and in each case the data may be in fixed- 

point or floating-point form. 

 We must be thoroughly familiar with the sequence of steps to be followed in order to carry 

out the operation and achieve a correct result. The solution to any problem that is stated by 

a finite number of well-defined procedural steps is called an algorithm. 

 Usually, an algorithm will contain a number of procedural steps which are dependent on 

results of previous steps. A convenient method for presenting algorithms is a flowchart. 
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Addition and Subtraction: 

 As we have discussed, there are three ways of representing negative fixed-point binary 

numbers: signed-magnitude, signed-1's complement, or signed-2's complement. Most 

computers use the signed-2's complement representation when performing arithmetic 

operations with integers. 

i. Addition and Subtraction with Signed-Magnitude Data: 

When the signed numbers are added or subtracted, we find that there are eight different 

conditions to consider, depending on the sign of the numbers and the operation performed. 

These conditions are listed in the first column of Table shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm: (Addition with Signed-Magnitude Data) 

i. When the signs of A and B are identical ,add the two magnitudes and attach the sign of 

A to the result. 

ii. When the signs of A and B are different, compare the magnitudes and subtract the 

smaller number from the larger. Choose the sign of the result to be the same as A if A > 

B or the complement of the sign of A if A < B. 

iii. If the two magnitudes are equal, subtract B from A and make the sign of the result  

positive. 

Algorithm: (Subtraction with Signed-Magnitude Data) 

i. When the signs of A and B are different, add the two magnitudes and attach the sign of 

A to the result. 

ii. When the signs of A and B are identical, compare the magnitudes and subtract the 

smaller number from the larger. Choose the sign of the result to be the same as A if A >  

B or the complement of the sign of A if A < B. 

iii. If the two magnitudes are equal, subtract B from A and make the sign of the result  

positive. 
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Hardware Implementation: 

To implement the two arithmetic operations with hardware, it is first necessary that the two 

numbers be stored in registers. 

i. Let A and B be two registers that hold the magnitudes of the numbers, and AS and BS be 

two flip-flops that hold the corresponding signs. 

ii. The result of the operation may be transferred to a third register: however, a saving is 

achieved if the result is transferred into A and AS. Thus A and AS together form an 

accumulator register. 

Consider now the hardware implementation of the algorithms above. 

o First, a parallel-adder is needed to perform the microoperation A + B. 

o Second, a comparator circuit is needed to establish if A > B, A = B, or A < B. 

o Third, two parallel-subtractor circuits are needed to perform the microoperations A - B 

and B - A. The sign relationship can be determined from an exclusive-OR gate with AS and 

BS as inputs. 

The below figure shows a block diagram of the hardware for implementing the addition and 

subtraction operations. It consists of registers A and B and sign flip-flops AS and BS. 

o Subtraction is done by adding A to the 2' s complement of B. The output carry is 

transferred to flip-flop E, where it can be checked to determine the relative magnitudes of  

the two numbers. 

o The add-overflow flip-flop AVF holds the overflow bit when A and B are added. 

Figure (i): Hardware for addition and subtraction with Signed-Magnitude Data 

 

 

 

 

 

 

 

 

 

 

 

The complementer provides an output of B or the complement of B depending on the state of the 

mode control M. 

 When M = 0, the output of B is transferred to the adder, the input carry is 0, and the output 

of the adder is equal to the sum A + B. 

 When M= 1, the l's complement of B is applied to the adder, the input carry is 1, and output 

   This is equal to A plus the 2's complement of B, which 

is equivalent to the subtraction A - B. 



  
 

S.JALAIAH Assistant Professor (KITS) Page 4  

Hardware Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (j): Flowchart for add and subtract operations 

ii. Addition and Subtraction with Signed-2's Complement Data 

 The register configuration for the hardware implementation is shown in the below 

Figure(a). We name the A register AC (accumulator) and the B register BR. The leftmost  

bit in AC and BR represent the sign bits of the numbers. The two sign bits are added or 

subtracted together with the other bits in the complementer and parallel adder. The 

overflow flip-flop V is set to 1 if there is an overflow. The output carry in this case is 

discarded. 

 The algorithm for adding and subtracting two binary numbers in signed-2' s complement 

representation is shown in the flowchart of Figure(b). The sum is obtained by adding the 

contents of AC and BR (including their sign bits). The overflow bit V is set to 1 if the 

exclusive-OR of the last two carries is 1, and it is cleared to 0 otherwise. The subtraction 

operation is accomplished by adding the content of AC to the 2's complement of BR. 

 Comparing this algorithm with its signed-magnitude counterpart, we note that it is much 

simpler to add and subtract numbers if negative numbers are maintained in signed-2' s 

complement representation. 
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Example:+32 is represented as 00100001 and -32 as 11011111. Note that 11011111 is the 2’s 

complement of 00100001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Multiplication Algorithms: 

Multiplication of two fixed-point binary numbers in signed-magnitude representation is done with 

paper and pencil by a process of successive shift and adds operations. This process is best 

illustrated with a numerical example. 

 

 

 

 

 

 

 

 

 

 

The process of multiplication: 

• It consists of looking at successive bits of the multiplier, least significant bit first. 

• If the multiplier bit is a 1, the multiplicand is copied down; otherwise, zeros are copied 

down. 

• The numbers copied down in successive lines are shifted one position to the left from the 

previous number. 

• Finally, the numbers are added and their sum forms the product. 

The sign of the product is determined from the signs of the multiplicand and multiplier. If they are 

alike, the sign of the product is positive. If they are unlike, the sign of the product is negative. 
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Hardware Implementation for Signed-Magnitude Data 

 The registers A, B and other equipment are shown in Figure (a). The multiplier is stored in 

the Q register and its sign in Qs. The sequence counter SC is initially set to a number equal 

to the number of bits in the multiplier. The counter is decremented by 1 after forming each 

partial product. When the content of the counter reaches zero, the product is formed and the 

process stops. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure(k): Hardware for multiply operation. 

 Initially, the multiplicand is in register B and the multiplier in Q, Their corresponding 

signs are in Bs and Qs, respectively 

 The sum of A and B forms a partial product which is transferred to the EA register. 

 Both partial product and multiplier are shifted to the right. This shift will be denoted by the 

statement shr EAQ to designate the right shift. 

 The least significant bit of A is shifted into the most significant position of Q, the bit from E 

is shifted into the most significant position of A, and 0 is shifted into E. After the shift, one 

bit of the partial product is shifted into Q, pushing the multiplier bits one position to the 

right.In this manner, the rightmost flip-flop in register Q, designated by Qn, will hold the 

bit of the multiplier, which must be inspected next. 
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Hardware Algorithm: 

Initially, the multiplicand is in B and the multiplier in Q. Their corresponding signs are in Bs 

and Qs, respectively. The signs are compared, and both A and Q are set to correspond to the sign 

of the product since a double-length product will be stored in registers A and Q. Registers A and E 

are cleared and the sequence counter SC is set to a number equal to the number of bits of the 

multiplier. 

After the initialization, the low-order bit of the multiplier in Qn is tested. 

i. If it is 1, the multiplicand in B is added to the present partial product in A . 

ii. If it is 0 , nothing is done. Register EAQ is then shifted once to the right to form the 

new partial product. 

The sequence counter is decremented by 1 and its new value checked. If it is not equal to zero,  

the process is repeated and a new partial product is formed. The process stops when SC = 0. 

The final product is available in both A and Q, with A holding the most significant bits and Q 

holding the least significant bits. A flowchart of the hardware multiply algorithm is shown in the 

below figure (l). 
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Figure(l): Flowchart for multiply operation 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (m): Numerical Example of multiplication 
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Booth Multiplication Algorithm:(multiplication of 2’s complement data): 

Booth algorithm gives a procedure for multiplying binary integers in signed-2's complement 

representation. 

Booth algorithm requires examination of the multiplier bits and shifting of the partial product.  

Prior to the shifting, the multiplicand may be added to the partial product, subtracted from the 

partial product, or left unchanged according to the following rules: 

1. The multiplicand is subtracted from the partial product upon encountering the first least 

significant 1 in a string of 1's in the multiplier. 

2. The multiplicand is added to the partial product upon encountering the first 0 (provided that 

there was a previous 1) in a string of O's in the multiplier. 

3. The partial product does not change when the multiplier bit is identical to the previous 

multiplier bit. 

Hardware implementation of Booth algorithm Multiplication: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (n): Hardware for Booth Algorithm 

The hardware implementation of Booth algorithm requires the register configuration shown in 

figure (n). This is similar addition and subtraction hardware except that the sign bits are not 

separated from the rest of the registers. To show this difference, we rename registers A, B, and Q, 

as AC, BR, and QR, respectively. Qn designates the least significant bit of the multiplier in register 

QR. An extra flip-flop Qn+1, is appended to QR to facilitate a double bit inspection of the 

multiplier. The flowchart for Booth algorithm is shown in Figure (o). 
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Hardware Algorithm for Booth Multiplication: 

AC and the appended bit Qn+1 are initially cleared to 0 and the sequence counter SC is set to a 

number n equal to the number of bits in the multiplier. The two bits of the multiplier in Qn and 

Qn+1 are inspected. 

i. If the two bits are equal to 10, it means that the first 1 in a string of 1's has been encountered. 

This requires a subtraction of the multiplicand from the partial product in AC. 

ii. If the two bits are equal to 01, it means that the first 0 in a string of 0's has been encountered. 

This requires the addition of the multiplicand to the partial product in AC. 

iii. When the two bits are equal, the partial product does not change. 

iv. The next step is to shift right the partial product and the multiplier (including bit Qn+1). 

This is an arithmetic shift right (ashr) operation which shifts AC and QR to the right and 

leaves the sign bit in AC unchanged. The sequence counter is decremented and the 

computational loop is repeated n times. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (o): Booth Algorithm for multiplication of 2’s complement numbers 
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Example: multiplication of ( - 9) x ( - 13) = + 117 is shown below. Note that the multiplier in QR 

is negative and that the multiplicand in BR is also negative. The 10-bit product appears in AC and 

QR and is positive. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (p): Example of Multiplication with Booth Algorithm. 

 

Division Algorithms: 
 

 Division of two fixed-point binary numbers in signed-magnitude representation is done 

with paper and pencil by a process of successive compare, shift, and subtract operations. 

The division process is illustrated by a numerical example in the below figure (q). 

 The divisor B consists of five bits and the dividend A consists of ten bits. The five most 

significant bits of the dividend are compared with the divisor. Since the 5-bit number is 

smaller than B, we try again by taking the sixth most significant bits of A and compare this 

number with B. The 6-bit number is greater than B, so we place a 1 for the quotient bit. The 

divisor is then shifted once to the right and subtracted from the dividend. 

 The difference is called a partial remainder because the division could have stopped here 

to obtain a quotient of 1 and a remainder equal to the partial remainder. The process is 

continued by comparing a partial remainder with the divisor. 

•  If the partial remainder is greater than or equal to the divisor, the quotient bit is equal to 1. 

The divisor is then shifted right and subtracted from the partial remainder. 

 



  
 

S.JALAIAH Assistant Professor (KITS) Page 12  

• If the partial remainder is smaller than the divisor, the quotient bit is 0 and no subtraction is 

needed. The divisor is shifted once to the right in any case. Note that the result gives both a  

quotient and a remainder. 

 

 

 

 

 

 

 

 

 

 

 

Figure (q): Example of Binary Division 

 

Hardware Implementation for Signed-Magnitude Data: 

The hardware for implementing the division operation is identical to that required for 

multiplication. 

  The divisor is stored in the B register and the double-length dividend is stored in registers 

A and Q. The dividend is shifted to the left and the divisor is subtracted by adding its 2's 

complement value. The information about the relative magnitude is available in E. 

  If E = 1, it signifies that A≥B. A quotient bit 1 is inserted into Q, and the partial remainder 

is shifted to the left to repeat the process. 

  If E = 0, it signifies that A < B so the quotient in Qn remains a 0. The value of B is then 

added to restore the partial remainder in A to its previous value. The partial remainder is 

shifted to the left and the process is repeated again until all five quotient bits are formed. 

  Note that while the partial remainder is shifted left, the quotient bits are shifted also and 

after five shifts, the quotient is in Q and the final remainder is in A. 

The sign of the quotient is determined from the signs of the dividend and the divisor. If the two 

signs are alike, the sign o f the quotient is plus. If they are unalike, the sign is minus. The sign of 

the remainder is the same as the sign of the dividend.
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Divide Overflow 

 The division operation may result in a quotient with an overflow. This is not a problem 

when working with paper and pencil but is critical when the operation is implemented with 

hardware. This is because the length of registers is finite and will not hold a number that 

exceeds the standard length. 

 To see this, consider a system that has 5-bit registers. We use one register to hold the 

divisor and two registers to hold the dividend. From the example shown in the above, we 

note that the quotient will consist of six bits if the five most significant bits of the dividend 

constitute a number greater than the divisor. The quotient is to be stored in a standard 5-bit 

register, so the overflow bit will require one more flip-flop for storing the sixth bit. 

  This divide-overflow condition must be avoided in normal computer operations because 

the entire quotient will be too long for transfer into a memory unit that has words of 

standard length, that is, the same as the length of registers. 

  This condition detection must be included in either the hardware or the software of the 

computer, or in a combination of the two. 

When the dividend is twice as long as the divisor, 

i. A divide-overflow condition occurs if the high-order half bits of the dividend constitute a 

number greater than or equal to the divisor. 

ii. A division by zero must be avoided. This occurs because any dividend will be greater than 

or equal to a divisor which is equal to zero. Overflow condition is usually detected when a 

special flip-flop is set. We will call it a divide-overflow flip-flop and label it DVF. 

 

 

Hardware Algorithm: 

1. The dividend is in A and Q and the divisor in B . The sign of the result is 

transferred into Qs to be part of the quotient. A constant is set into the sequence counter SC to  

specify the number of bits in the quotient. 

2. A divide-overflow condition is tested by subtracting the divisor in B from half of 

the bits of the dividend stored in A. If A ≥ B, the divide-overflow flip-flop DVF is set and the 

operation is terminated prematurely. If A < B, no divide overflow occurs so the value of the 

dividend is restored by adding B to A. 
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3. The division of the magnitudes starts by shifting the dividend in AQ to the left with 

the high-order bit shifted into E. If the bit shifted into E is 1, we know that EA > B because EA 

consists of a 1 followed by n-1 bits while B consists of only n -1 bits. In this case, B must be 

subtracted from EA and 1 inserted into Qn for the quotient bit. 

4. If the shift-left operation inserts a 0 into E, the divisor is subtracted by adding its 2's 

complement value and the carry is transferred into E . If E = 1, it signifies that A ≥ B; 

therefore, Qn is set to 1 . If E = 0, it signifies that A < B and the original number is restored by 

adding B to A . In the latter case we leave a 0 in Qn. 

This process is repeated again with registers EAQ. After n times, the quotient is 

formed in register Q and the remainder is found in register A 

 

 

 
 

 

Figure (r ): Flowchart for Divide operation 
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Figure (s): Example of Binary Division 
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Floating-point arithmetic operations 
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. Figure 5.14 Addition and subtraction of floating point numbers 
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Division: 
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