UNIT-1V
Syllabus:

Computer Arithmetic: Addition and subtraction, Multiplication algorithms, division algorithms,

floating-point arithmetic operations.
Introductjon:

» Arithmetic instructions in digital computers manipulate data to produce results necessary
for the solution of computational problems.

» These instructions perform arithmetic calculations and are responsible for the bulk of
activity involved in processing data ina computer.

» The four basic arithmetic operations are addition, subtraction, multiplication and
division. From these four bulk operations, it is possible to formulate other arithmetic
functions and solve scientific problems by means of numerical analysis methods.

» An arithmetic processor is the part of a processor unit that executes arithmetic operations.
The data type assumed to reside in processor registers during the execution of an
arithmetic instruction is specified in the definition of the instruction. A:n arithmetic
instruction may specify binary or decimal data, and in each case the data may be in fixed-
point or floating-point form.

» We must be thoroughly familiar with the sequence of steps to be followed in order to carry
out the operation and achieve a correct result. The solution to any problem that is stated by
a finite number of well-defined procedural steps is called an glgorithm.

» Usually, an algorithm will contain a number of procedural steps which are dependent on

results of previous steps. A convenient method for presenting algorithms is a flowchart.

S.JALAIAH Assistant Professor (KITS) Page 1

Addition and Subtraction:

» As we have discussed, there are three ways of representing negative fixed-point binary
numbers: signed-magnitude, signed-1's complement, or signed-2's complement. Most
computers use the signed-2's complement representation when performing arithmetic
operations with integers.

i. Addition and Subtraction with Signed-Magnitude Data:

When the signed numbers are added or subtracted, we find that there are eight different

conditions to consider, depending on the sign of the numbers and the operation performed.

Subtract Magnitudes
Add

Operation Magnitudes When A > B WhenA<B WhenA =B

(+A) + (+B) +(A + B)

(+A) + (—B) +(A — B) —(B - A) +(A — B)
(—A) + (+B) —(A — B) +(B — A) +(A — B)
(—A) + (—8B) —(A + B)
(+A) — (+B) +(A — B) (B — A) +(A — B)
(+A) - (—-B) +(A + B)
(-A) - (+B) —(A + B)
(—A) - (—B) —(A — B) +(B — A) +(A - B)

Algorithm: (Addition with Signed-Magnitude Data)
I. When the signs of A and B are identical ,add the two magnitudes and attach the sign of
A to the result.
. When the signs of A and B are different, compare the magnitudes and subtract the
smaller number from the larger. Choose the sign of the result to be the same as A if A >
B or the complement of the sign of A if A<B.
. If the two magnitudes are equal, subtract B from A and make the sign of the result
positive.
Algorithm: (Subtraction with Signed-Magnitude Data)
. When the signs of A and B are different, add the two magnitudes and attach the sign of
A to the result.
. When the signs of A and B are identical, compare the magnitudes and subtract the
smaller number from the larger. Choose the sign of the result to be the same as A if A >
B or the complement of the sign of A if A<B.

il. If the two magnitudes are equal, subtract B from A and make the sign of the result

positive.

S.JALAIAH Assistant Professor (KITS) Page 2

Hardware Implementation:
To implement the two arithmetic operations with hardware, it is first necessary that the two
numbers be stored in registers.

i Let A and B be two registers that hold the magnitudes of the numbers, and AS and BS be
two flip-flops that hold the corresponding signs.

The result of the operation may be transferred to a third register: however, a saving is
achieved if the result is transferred into A and AS. Thus A and AS together form an
accumulator register.

Consider now the hardware implementation of the algorithms above.

o First, a parallel-adder is needed to perform the microoperation A + B.

o Second, a comparator circuit is needed to establish if A>B, A=B, or A< B.

o Third, two parallel-subtractor circuits are needed to perform the microoperations A - B
and B - A. The sign relationship can be determined from an exclusive-OR gate with AS and
BS as inputs.

The below figure shows a block diagram of the hardware for implementing the addition and

subtraction operations. It consists of registers A and B and sign flip-flops AS and BS.

o Subtraction is done by adding A to the 2' s complement of B. The output carry is
transferred to flip-flop E, where it can be checked to determine the relative magnitudes of
the two numbers.

o The add-overflow flip-flop AVF holds the overflow bit when A and B are added.

Eigure (i): Hardware for addition and subtraction with Signed-Magnitude Data

= | 5 rerime]

AVF I Complementer J T M (Mode control)

—o;;‘:g”—{ Paralicl adder f—

Input camry

sY
= A]

Load sum

The complementer provides an output of B or the complement of B depending on the state of the
mode control M.
s When M = 0, the output of B is transferred to the adder, the input carry is 0, and the output
of the adder isequal to the sum A + B.
% When M= 1, the I's complement of B is applied to the adder, the input carry is 1, and output

5=A+8B +1 This is equal to A plus the 2's complement of B, which
isequivalent to the subtraction A - B.

S.JALAIAH Assistant Professor (KITS) Page 3

Hardware Algorithm

Srbrracr operation Add operation
Minuend in A Augend in A
Subtrahend in & Addend in 8

E + o
=0 = =
LR T St ERT
= B A, = 8B,
A, = 8,
— R 1
EA - A4 [EA ~—A4 + 8 !
A VAT -—

b4 !
END
(result is in .4 and .A_)

Figure (): Flowchart for add and subtract operations

-

ii. Addition and Subtraction with Signed-2's Complement Data

» The register configuration for the hardware implementation is shown in the below

S.JALAIAH Assistant Professor (KITS)

Figure(a). We name the A register AC (accumulator) and the B register BR. The leftmost
bit in AC and BR represent the sign bits of the numbers. The two sign bits are added or
subtracted together with the other bits in the complementer and parallel adder. The
overflow flip-flop V is set to 1 if there is an overflow. The output carry in this case is
discarded.

The algorithm for adding and subtracting two binary numbers in signed-2' s complement
representation is shown in the flowchart of Figure(b). The sum is obtained by adding the
contents of AC and BR (including their sign bits). The overflow bit V is set to 1 if the
exclusive-OR of the last two carries is 1, and it is cleared to O otherwise. The subtraction
operation isaccomplished by adding the content of AC to the 2's complement of BR.
Comparing this algorithm with its signed-magnitude counterpart, we note that it is much
simpler to add and subtract numbers if negative numbers are maintained in signed-2' s

complement representation.

Page 4

Example:+32 is represented as 00100001 and -32 as 11011111. Note that 11011111 is the 2’s

complement of 00100001.

BR register
Y
Complementer and
4 parallel adder
Overflow l T
AC register

Figure(a): Hardware for addition &
subtraction of 2's complement numbers

Multiplication Algorithms:

Subtract Add

Minuend in AC Augend in AC
Subtrahend in BR Addend in BR
Y

AC«AC + BR
Veoverflow

Y

AC—AC +BR + 1
Veoverflow

Y Y
END (END >

Figure(b): Algorithm for adding & subtracting of 2's
complement numbers

Multiplication of two fixed-point binary numbers in signed-magnitude representation is done with

paper and pencil by a process of successive shift and adds operations. This process is best

illustrated with a numerical example.

23 10111 Multiplicand
19 >x< 10011 Multiplier
10111
10111
00000 — Partial
00000 Products
10111
437 110110101 Product

The process of multiplication:

It consists of looking at successive bits of the multiplier, least significant bit first.

 Ifthe multiplier bitisa 1, the multiplicand is copied down; otherwise, zeros are copied

down.

* The numbers copied down in successive lines are shifted one position to the left from the

previous number.

« Finally, the numbers are added and their sum forms the product.

The sign of the product is determined from the signs of the multiplicand and multiplier. If they are

alike, the sign of the product is positive. If they are unlike, the sign of the product is negative.

S.JALAIAH Assistant Professor (KITS)

Page 5

I | ion for Signed-Maanitud

[J The registers A, B and other equipment are shown in Figure (a). The multiplier is stored in

the Q register and its sign in Qs. The sequence counter SC is initially set to a number equal

to the number of bits in the multiplier. The counter is decremented by 1 after forming each

partial product. When the content of the counter reaches zero, the product is formed and the

process stops.

Sequence counter (5C)

(rightmost bit)

Qs

@n

B,
B register
l
Complementer and
parallel adder
Ag
00—+ E [A register

i

Q register

Eigure(k). Hardware for multiply operation.
[Initially, the multiplicand is in register B and the multiplier in Q, Their corresponding

signs are in Bs and Qs, respectively

[0 The sum of A and B forms a partial product which is transferred to the EA register.

(1 Both partial product and multiplier are shifted to the right. This shift will be denoted by the

statement shr EAQ to designate the right shift.

[1 The least significant bit of A is shifted into the most significant position of Q, the bit fromE

is shifted into the most significant position of A, and 0 is shifted into E. After the shift, one

bit of the partial product is shifted into Q, pushing the multiplier bits one position to the

right.In this manner, the rightmost flip-flop in register Q, designated by Qn, will hold the

bit of the multiplier, which must be inspected next.

S.JALAIAH Assistant Professor (KITS)

Page 6

Hardware Algorithm:
Clnitially, the multiplicand is in B and the multiplier in Q. Their corresponding signs are in Bs
and Qs, respectively. The signs are compared, and both A and Q are set to correspond to the sign
of the product since a double-length product will be stored in registers A and Q. Registers A and E
are cleared and the sequence counter SC is set to a number equal to the number of bits of the
multiplier.
[1After the initialization, the low-order bit of the multiplier in Qn is tested.

I. Ifitis1, the multiplicand in B isadded to the present partial product in A .

i, If it is 0, nothing is done. Register EAQ is then shifted once to the right to form the

new partial product.

[The sequence counter is decremented by 1 and its new value checked. If it is not equal to zero,
the process is repeated and a new partial product is formed. The process stops when SC = 0.
OThe final product is available in both A and Q, with A holding the most significant bits and Q
holding the least significant bits. A flowchart of the hardware multiply algorithm is shown in the

below figure (I).

S.JALAIAH Assistant Professor (KITS) Page 7

AFeal ripp 3 Operaticon

Multiplicand inmn &5
Multiplier i

~1

= T O B

Cr, -~ O B2
A e A S -— O

{EA*—A—I—B]

I

sk LA O
ST w— ST — L

END»
(product is ir A0

Eigure(l): Flowchart for multiply operation

Multiplicand B = 10111 E A Q SC
Multiplier in Q 0 00000 10011 101
Q. =1;add B 10111
First partial product 0 10111
Shift right EAQ 0 01011 11001 100
Q. =1;add B 10111
Second partial product 1 00010
Shift right EAQ 0 10001 01100 011
Q. = 0; shift right EAQ 0 01000 10110 010
Q. = 0, shift right EAQ 0 00100 01011 001
Q.= 1;add B 10111 '
Fifth partial product 0 11011
Shift right EAQ 0 01101 10101 000

Final product in AQ = 0110110101

Eigure (m): Numerical Example of multiplication

S.JALAIAH Assistant Professor (KITS)

Page 8

[JBooth algorithm gives a procedure for multiplying binary integers in signed-2's complement

representation.

[1Booth algorithm requires examination of the multiplier bits and shifting of the partial product.

Prior to the shifting, the multiplicand may be added to the partial product, subtracted from the

partial product, or left unchanged according to the following rules:

1. The multiplicand is subtracted from the partial product upon encountering the first least
significant 1 in a string of 1's in the multiplier.

2. The multiplicand is added to the partial product upon encountering the first O (provided that
there was a previous 1) ina string of O's in the multiplier.

3. The partial product does not change when the multiplier bit is identical to the previous

multiplier bit.

ware imp) ion of Booth alqoritt ltinlication:

BR register | Sequence counter (5§C)

A §

Complementer and
parallel adder

¥

,, £

AC register —— R register -

Eigure (n). Hardware for Booth Algorithm

The hardware implementation of Booth algorithm requires the register configuration shown in
figure (n). This is similar addition and subtraction hardware except that the sign bits are not
separated from the rest of the registers. To show this difference, we rename registers A, B, and Q,

as AC, BR, and QR, respectively. Qn designates the least significant bit of the multiplier in register

QR. An extra flip-flop Qn+1, is appended to QR to facilitate a double bit inspection of the

multiplier. The flowchart for Booth algorithm is shown in Figure (0).

S.JALAIAH Assistant Professor (KITS) Page 9

I \orithm § h Multinlication:

[1AC and the appended bit Qn+1 are initially cleared to 0 and the sequence counter SC is set to a
number n equal to the number of bits in the multiplier. The two bits of the multiplier in Qn and
Qn+1 are inspected.
i. Ifthe two bits are equal to 10, it means that the first 1 in a string of 1's has been encountered.
This requires a subtraction of the multiplicand from the partial product in AC.
iil. Ifthe two bits are equal to 01, it means that the first 0 in a string of 0's has been encountered.
This requires the addition of the multiplicand to the partial product in AC.
iii. When the two bits are equal, the partial product does not change.
iv. The next step is to shift right the partial product and the multiplier (including bit Qn+1).
Thisis an arithmetic shift right (ashr) operation which shifts AC and QR to the right and
leaves the sign bit in AC unchanged. The sequence counter is decremented and the

computational loop is repeated n times.

Multiplw

Multiplicand in SR
Multiplier in MW

AC— O
Oy +— O
S =— n
=10
i 8 = 00 +
AC— AC + BR + 1 l =11 AC — . AC + BR j
-w -
ashr (4AC & CR)
ST -— S — 1
-
== 0 / =0

SO

Eigure (0): Booth Algorithm for multiplication of 2°s complement numbers

S.JALAIAH Assistant Professor (KITS) Page 10

Example: multiplication of (- 9) x (- 13) =+ 117 is shown below. Note that the multiplier in QR

is negative and that the multiplicand in BR is also negative. The 10-bit product appears in AC and

QR and is positive.

BR = 10111

On Onsr BR + 1= 01001 AC OR [0 SC

Initaal 00000 10011 0 101
1 0 Subtract BR 01001
01001

ashr 00100 11001 1 100

1 1 ashr 00010 01100 1 011
0 1 Add BR 10111
11001

ashr 11100 10110 0 010

0 0 ashr 11110 01011 0 001
1 0 Subtract BR 01001
00111

ashr 00011 10101 1 000

Figure (p): Example of Multiplication with Booth Algorithm.

Division Algorithms:

> Division of two fixed-point binary numbers in signed-magnitude representation is done

with paper and pencil by a process of successive compare, shift, and subtract operations.

The division process is illustrated by a numerical example in the below figure (q).

U4 The divisor B consists of five bits and the dividend A consists of ten bits. The five most

significant bits of the dividend are compared with the divisor. Since the 5-bit number is

smaller than B, we try again by taking the sixth most significant bits of A and compare this

number with B. The 6-bit number is greater than B, so we place a 1 for the quotient bit. The

divisor is then shifted once to the right and subtracted from the dividend.

U The difference is called a partial remainder because the division could have stopped here

to obtain a quotient of 1 and a remainder equal to the partial remainder. The process is

continued by comparing a partial remainder with the divisor.

« If the partial remainder is greater than or equal to the divisor, the quotient bit is equal to 1.

The divisor is then shifted right and subtracted from the partial remainder.

S.JALAIAH Assistant Professor (KITS)

Page 11

 If the partial remainder is smaller than the divisor, the quotient bit is 0 and no subtraction is

needed. The divisor is shifted once to the right in any case. Note that the result gives both a

quotient and a remainder.

Divisor: 11010

B = 10001)0111000000
01110
011100
10001

-010110
--10001

--001010
---010100
----10001

----000110

Quotient = Q0

Dividend = A4

5 bits of A < B, quotient has 5 bits
6bitsof A > B

Shift right B and subtract.enter 1 inQ

7 bits of remainder = B
Shift right B and subtract; enter 1 in Q

Remainder < B; enter 0 in Q; shift right B
Remainder 2 B

Shift right B and subtract; enter 1 inQ
Remainder < B; enter O in Q

Final remainder

Eigure (). Example of Binary Division

ion for Signed-Maanitude Data:

The hardware for implementing the division operation is identical to that required for

multiplication.

v' The divisor is stored in the B register and the double-length dividend is stored in registers
Aand Q. The dividend is shifted to the left and the divisor is subtracted by adding its 2's

complement value. The information about the relative magnitude isavailable in E.

v' IfE =1, itsignifies that A>B. A quotient bit 1 is inserted into Q, and the partial remainder

is shifted to the left to repeat the process.

v If E=0, itsignifies that A < B so the quotient in Qn remains a 0. The value of B is then

added to restore the partial remainder in A to its previous value. The partial remainder is

shifted to the left and the process is repeated again until all five quotient bits are formed.

v" Note that while the partial remainder is shifted left, the quotient bits are shifted also and

after five shifts, the quotient is in Q and the final remainder isin A.

The sign of the quotient is determined from the signs of the dividend and the divisor. If the two

signs are alike, the sign o f the quotient is plus. If they are unalike, the sign is minus. The sign of

the remainder is the same as the sign of the dividend.

S.JALAIAH Assistant Professor (KITS)

Page 12

ivid '

U The division operation may result in a quotient with an overflow. This is not a problem
when working with paper and pencil but is critical when the operation is implemented with
hardware. This is because the length of registers is finite and will not hold a number that
exceeds the standard length.

O To see this, consider a system that has 5-bit registers. We use one register to hold the
divisor and two registers to hold the dividend. From the example shown in the above, we
note that the quotient will consist of six bits if the five most significant bits of the dividend
constitute a number greater than the divisor. The quotient isto be stored in a standard 5-bit
register, so the overflow bit will require one more flip-flop for storing the sixth bit.

U This divide-overflow condition must be avoided in normal computer operations because
the entire quotient will be too long for transfer into a memory unit that has words of
standard length, that is, the same as the length of registers.

O This condition detection must be included in either the hardware or the software of the

computer, or ina combination of the two.

When the dividend is twice as long as the divisor,

A divide-overflow condition occurs if the high-order half bits of the dividend constitute a
number greater than or equal to the divisor.

A division by zero must be avoided. This occurs because any dividend will be greater than
or equal to a divisor which is equal to zero. Overflow condition is usually detected when a

special flip-flop is set. We will call it a divide-overflow flip-flop and label it DVF.

Hardware Algorithm:

S.JALAIAH Assistant Professor (KITS)

1 The dividend is in A and Q and the divisor in B . The sign of the result is
transferred into Qs to be part of the quotient. A constant is set into the sequence counter SC to
specify the number of bits in the quotient.

2. A divide-overflow condition is tested by subtracting the divisor in B from half of
the bits of the dividend stored in A. If A > B, the divide-overflow flip-flop DVF is set and the
operation is terminated prematurely. If A < B, no divide overflow occurs so the value of the
dividend is restored by adding B to A.

Page 13

3. The division of the magnitudes starts by shifting the dividend in AQ to the left with
the high-order bit shifted into E. If the bit shifted into E is 1, we know that EA > B because EA
consists of a 1 followed by n-1 bits while B consists of only n -1 bits. In this case, B must be
subtracted from EA and 1 inserted into Qn for the quotient bit.

4. If the shift-left operation inserts a 0 into E, the divisor is subtracted by adding its 2's
complement value and the carry is transferred into E . If E = 1, it signifies that A > B;
therefore, Qnissetto 1. If E =0, it signifies that A < B and the original number is restored by
adding B to A . Inthe latter case we leave a 0 in Qn.

This process is repeated again with registers EAQ. After n times, the quotient is
formed in register Q and the remainder is found in register A

Divide operation

Divide magnitudes

QS‘_AJQBS
SC+n — 1 shl EAQ
w =0 =1
EA~A+F + 1 J L
Ed+«~A+B+1 A+~A+B+1
=0 =1
E
A<B |r
+ 1 A<BY =0 Y YA>E
EA<~A+B EA < A+B EA+~A+ B o, <1
DVF +— 1 DVEF +«<0 I _I
SC+~8SC — 1

\EC/
r

END END
(Divide overflow) (Quotient is in Q
remainder is in A)

Eigure (r): Flowchart for Divide operation
S.JALAIAH Assistant Professor (KITS) Page 14

Divisor B = 10001, B+1=01111

E A Q SC
Dividend: 01110 00000 5
shl E AQ 0 11100 00000
add B + 1 01111
E=1 1 01011
Set 0, = 1 1 01011 00001 &
shl EAQ 0 10110 00010
Add B+ 1 01111
E=1 1 00101
Set Q, =1 I 00101 0001 1 3
shl EAQ 0 01010 00110
Add £+ 1 Oo1111
E=0;leave 0, =0 0 11001 00110
Add B 10001 5
Restore remainder 1 01010
shl E AQ 0 10100 01100
Add F +1 01111
E=1 1 00011
SetQ, =1 1 00011 01101 1
shl E AQ 0 00110 11010
Add B + 1 01111
E=0;leave 0, =0 0 10101 11010
Add B 10001
Restore remainder 1 00110 11010 0
Neglect E
Remainder in A: 00110
Quotientin Q: 11010

Eigure (s). Example of Binary Division

S.JALAIAH Assistant Professor (KITS) Page 15

Floating-point arithmetic operations

The most common way is to specify them by a real declaration statement as opposed
to fixed—point numbers, which are specified by an integer declaration statement. Any
computer that has a compiler for such high-level programming language must have a
provision for handling floating—point arithmetic operations. The compiler must be designed
with a package of floating—point software subroutines. The hardware method i1s more
expensive, it is so much more efficient than the software method.

Basic Considerations

A floating point number in computer registers consists of two parts : a mantissa m and
an exponent e. The two parts represent a number obtained from multiplying m time a radix r
raised to the value of e; thus

mxr

The mantissa may be a fraction or an integer. The location of the radix point and the
value of the radix r are assumed and are not included in the registers. The decimal number
537.25 1is represented in a register with m = 53725 and e = 3 and is interpreted to represent
the floating —point number

53725x 10°

A floating — point number is normalized if the most significant digit of the mantissa 1s
nonzero. In this way the mantissa contains the maximum possible number of significant
digits. A zero cannot be normalized because it does not have a nonzero digits. A zero cannot
be normalized because it does not have a nonzero digit. It is represented in floating—point by
all 0’s in the mantissa and exponent.

Floating — point representation increases the range of numbers that can be
accommodated in a given register.

Arithmetic operations with floating—point numbers are more complicated than with
fixed—point numbers and their execution takes longer and requires more complex hardware.
Adding or subtracting two numbers requires first an alignment of the radix point since the
exponent parts must be made equal before adding or subtracting the mantissas. The alignment
1s done by shifting one mantissa while its exponent 1s adjusted until it is equal to the other
exponent. Consider the sum of the following floating — point numbers:

5372400 x 10°
+.1580000 x 107!

It is necessary that the two exponents be equal before the mantissas can be added. We
can either shift the first number three positions to the left, or shift the second number three
positions to the right. When the mantissas are stored in registers, shifting to the left causes a

S.JALAIAH Assistant Professor (KITS) Page 16

S.JALAIAH Assistant Professor (KITS)

loss of most significant digits. Shifting to the right causes a loss of least significant digits.
The second method is preferable because it only reduces the accuracy, while the first method
may cause an error. The usual alignment procedure is to shift the mantissa that has the
smaller exponent to the right by a number of places equal to the difference between the
exponents. After this is done, the mantissas can be added :

5372400 x 10
+.0001580 x 10°

. 5373980 x 10°

When two normalized mantissas are added, the sum may contain an overflow digit.
An overflow can be corrected easily by shifting the sum once to the right and incrementing
the exponent. When two numbers are subtracted, the result may contain most significant
zeros as shown in the following example:

.56780x 10°
-.56430 x 10°
.00350x 10°

A floating — point number that has a 0 in the most significant position of the mantissa
is said to have an underflow. To normalize a number that contains an underflow, it is
necessary to shift the mantissa to the left and decrement the exponent until a nonzero digit
appears in the first position.

Floating — point multiplication and division do not require an alignment of the
mantissas. The product can be formed by multiplying the two mantissas and adding the
exponents. Division is accomplished by dividing the mantissas and subtracting the exponents.

The operations performed with the exponents are compare and increment (for aligning
the mantissas), add and subtract (for multiplication and division), and decrement (to
normalize the result). The exponent may be represent in any one of the three representation :
signed — magnitude, signed — 2°s complement, or signed -1’s complement.

A fourth representation employed in many computers is known as a biased exponent.
In this representation, the sign bit i1s removed from being a separate entity. The bias is a
positive number that is added to each exponent as the floating — point number is formed, so
that internally all exponents are positive.

The advantage of biased exponents is that they contain only positive numbers. It is
then simpler to compare their relative magnitude without being concerned with their signs.
As a consequence, a magnitude comparator can be used to compare their relative magnitude
during the alignment of the mantissa and the smallest possible exponent.

Page 17

Register Configuration

The register configuration for floating — point operations is quite similar to the layout
for fixed — point operations.

There are three registers, BR, AC, and QR. Each register is subdivided into two parts.
the mantissa part has the same uppercase letter symbols as in fixed—point representation.

Each floating — point number has a mantissa in signed magnitude representation and a
biased exponent. Thus the AC has a mantissa

Figure 5.13 Registers for floating—point arithmetic operation

B, 5 b BR
E Parallel - adder Parallel — adder
and comparator
AC
A, Aq A d
Qs Q g

QR

whose sign is in A, and a magnitude that is in A. The exponent is in the part of the register
denoted by the lowercase letter symbol a. The diagram shows explicitly the most significant
bit of A, labeled by A;. The bit in this position must be a 1 for the number to be normalized.
Note that the symbol AC represents the entire register, that is, the concatenation of A, A and
a. Register BR is subdivided into Bs, B and b, and QR into Qs, Q, and gq. A parallel-adder
adds the two mantissas and transfers the sum into A and the carry into E. A separate parallel
adder 1s used for the exponents. Since the exponents are biased, they do not have a distinct
sign bit but are represented as a biased positive quantity. The floating—point numbers are so
large that the chance of an exponent overflow is very remote, the exponent overflow will be
neglected. The exponents are also connected to a magnitude comparator that provides three
binary outputs to indicate their relative magnitude.

The number in the mantissa will be taken as a fraction, so the binary point is assumed
to reside to the left of the magnitude part. The numbers in the registers are assumed to be
initially normalized. After each arithmetic operation, the result will be normalized. Thus all
floating — point operands coming from and going to the memory unit are always normalized.

S.JALAIAH Assistant Professor (KITS) Page 18

S.JALAIAH Assistant Professor (KITS)

Addition and Subtraction

During addition or subtraction, the two floating—point operands are in AC and BR.
The sum or difference is formed in the AC. The algorithm can be divided into four
consecutive parts:

1. Check for zeros

2. Align the mantissas

3. Add or subtract the mantissas
4. Normalize the result

A floating—point number that is zero cannot be normalized. If this number is used during
the computation, the result may also be zero. Instead of checking for zeros during the
normalization process we check for zeros at the beginning and terminate the process if
necessary. The alignment of the mantissas must be carried out prior to their operation. After

the mantissas are added or subtracted, the result may be normalized. The normalization
procedure ensures that the result is normalized prior to its transfer to memory.

The flowchart for adding or subtracting two floating—point binary numbers is shown
in Fig.5.14. If BR is equal to zero, the operation is terminated, with the value in the AC being
the result. If AC is equal to zero, we transfer the content of BR into AC and also complement
its sign if the numbers are to be subtracted. If neither number is equal to zero, we proceed to
align the mantissas.

The magnitude comparator attached to exponents a and b provides three outputs that
indicate their relative magnitude. If the two exponents are equal, we go to perform the
arithmetic operation. If the exponents are not equal, the mantissa having the smaller exponent
is shifted to the right and its exponent incremented. This process is repeated until the two
exponents are equal.

The addition and subtraction of the two mantissas 1s identical to the fixed - point addition
and subtraction of the two mantissas is identical to the fixed - point addition and subtraction
algonthm. The magnitude part 1s added or subtracted depending on the operation and the

signs of the two mantissas. If an overflow occurs when the magnitudes are added, it is
transferred into flip—flop E. If E 1s equal to 1, the bit 15 transferred into A; and all other bits of
A are shifted right. The exponent must be incremented to maintain the correct number. No
underflow may occur in this case because the original mantissa that was not shifted during
the alignment was already in a normalized position.

If the magnitudes were subtracted, the result may be zero or may have an underflow.
If the mantissa is zero, the entire floating—point number in the AC is made zero. Otherwise,
the mantissa must have at least one bit that is equal to 1. The mantissa has an underflow if the
most significant bit in position A; is 0. In the case, the mantissa is shifted left and the
exponent decremented. The bit in A; is checked again and the process is repeated until it is
equal to 1. When A;=1, the mantissa 1s normalized and the operation 1s completed.

Page 19

Add or subtract

»
|
|

Align
manbesses

- -

Mantisa

L 1 addition
[ea=asBer] | Ea-ass | sdbhracition

R

Normalization

shr A
A, ~E
eva+t

(>

. Figure 5.14 Addition and subtraction of floating point numbers

S.JALAIAH Assistant Professor (KITS) Page 20

Multiplication

The multiplication of the mantissas 1s performed in the same way as in fixed—point to
provide a double — precision product. The double—precision answer 1s used in fixed—point
numbers to increase the accuracy of the product. In floating—point. the range of a single
precision mantissa combined with the exponent 1s usually accurate enough so that only single
precision numbers are maintained. Thus the half most significant bits of the mantissa product
and the exponent will be taken together to form a single precision floating—point product.

The multiplication algorithm can be subdivided into four parts.
Check for zeros

Add the exponents

Multiply the mantissas

Ll

Normalize the product

Steps 2 and 3 can be done simultaneously if separate adders are available for the mantissas
and exponents.

The two operands are checked to determine if they contain a zero. If either operand is
equal to zero, the product in the AC is set to zero and the operation is terminated. If neither of
the operands is equal to zero, the process continues with the exponent addition.

The exponent of the multiplier is in q and the adder is between exponents a and b. It is
necessary to transfer the exponents from q to a, add the two exponents, and transfer the sum
into a. Since both exponents are biased by the addition of a constant, the exponent sum will
have double this bias. The correct biased exponent for the product is obtained by subtracting
the bias number from the sum.

The multiplication of the mantiszsas is done az in the fixed — point case with the
product residing in A and Q. Overflow cannot occur during multiplication, so there is not
need to check for it.

The product may have an underflow, so the most significant bit in A is checked. If 1t
18 a 1, the product is already normalized. If it is a 0, the mantissa in AQ iz shifted left and the
exponent decremented. Note that only one normalization shift 1s necessary. The multiplier
and multiplicand were originally normalized and contained fractions. The smallest
normalized operand 1s 0.1, so the smallest possible product is 0.01. Therefore, only one
leading zero may occur.

Although the low — order half of the mantissa 15 in Q, we do not use it for the floating
— point product. Only the value in the AC 1s taken as the product.

S.JALAIAH Assistant Professor (KITS) Page 21

Division:

Floating — point division requires that the exponents be subtracted and the mantissas
divided. the mantissa division is done as in fixed — point except that the dividend has a single
— precision mantissa that i1s placed in the AC. For integer representation, a single — precision
dividend must be placed in register Q and register A must be cleared. The zeros in A are to
the left of the binary point and have no significance. In fraction representation, a single —
precision dividend is placed in register A and register Q is cleared. The zeros in QQ are to the
right of the binary point and have no significance.

If the dividend is greater than or equal to the divisor, the dividend fraction is shifted to
the right and its exponent incremented by 1.

The division algorithm can be subdivided into five parts

1. Check for zeros

2. Imtialize registers and evaluate the sign
3. Align the dividend

4. Subtract the exponents

5.

Divide the mantissas

The two operands are checked for zero. If the divisor is zero, it indicates an attempt to
divide by zero, which 1s an illegal operation. The operation is terminated with an error
message. An alternative procedure would be to set the quotient in QR to the most positive
number possible (if the dividend is positive) or to the most negative possible (if the dividend
is negative). If the dividend in AC is zero, the quotient in QR is made zero and the operation

terminates.

If the operands are not zero, we proceed to determine the sign of the quotient and
store it in Qs. The sign of the dividend in A; is left unchanged to be the sign of the remainder.
The Q register is cleared and the sequence counter SC is set to a number equal to the number

of bits in the quotient.

The dividend alignment is similar to the divide — overflow check in the fixed — point
operation. The proper alignment requires that the fraction dividend be smaller than the
divisor. The two fractions are compared by a subtraction test. The carry in E determines their
relative magnitude. The dividend fraction is restored to its original value by adding the
divisor. If A =B, it is necessary to shift A once to the right and increment the dividend

exponent. Since both operands are normalized, this alignment ensures that A < B.

S.JALAIAH Assistant Professor (KITS)

	Addition and Subtraction:
	i. Addition and Subtraction with Signed-Magnitude Data:
	Hardware Implementation:
	Hardware Algorithm
	ii. Addition and Subtraction with Signed-2's Complement Data

	Multiplication Algorithms:
	The process of multiplication:
	Hardware Implementation for Signed-Magnitude Data
	Hardware Algorithm:
	Booth Multiplication Algorithm:(multiplication of 2’s complement data):
	Hardware implementation of Booth algorithm Multiplication:
	Hardware Algorithm for Booth Multiplication:

	Division Algorithms:
	Hardware Implementation for Signed-Magnitude Data:
	Divide Overflow
	Hardware Algorithm:

