
Software Engineering (R20) –Unit IV Page 1

UNIT- IV

SOFTWARE TESTING STRATEGIES:

A STRATEGIC APPROACH TO SOFTWARE TESTING

A number of software testing strategies have been proposed in the literature. All

provide you with a template for testing and all have the following generic

characteristics:

• To perform effective testing, you should conduct effective technical reviews.

By doing this, many errors will be eliminated before testing commences.

• Testing begins at the component level and works “outward” toward the

integration of the entire computer-based system.

• Different testing techniques are appropriate for different software

engineering approaches and at different points in time.

• Testing is conducted by the developer of the software and (for large

projects) an independent test group.

• Testing and debugging are different activities, but debugging must be

accommodated in any testing strategy.

VERIFICATION AND VALIDATION:

Verification is a process of checking documents, design, code, and program in order to

check if the software has been built according to the requirements or not. The main goal

of verification process is to ensure quality of software application, design, architecture

etc. The verification process involves activities like reviews, walk-throughs and

inspection.

Validation in Software Engineering is a dynamic mechanism of testing and validating

if the software product actually meets the exact needs of the customer or not. The process

helps to ensure that the software fulfills the desired use in an appropriate environment.

The validation process involves activities like unit testing, integration testing, system

testing and user acceptance testing..

SOFTWARE TESTING STRATEGIES:

A Strategic Approach to Software Testing, Test Strategies for Conventional Software and Object

Oriented Software, Validation Testing, White- Box Testing, Basis Path Testing, Black-Box

Testing, System Testing.

Software Engineering (R20) –Unit IV Page 2

Boehm states this another way:

Verification: “Are we building the product right?”

Validation: “Are we building the right product?”

Organizing for Software Testing

For every software project, there is an inherent conflict of interest that

occurs as testing begins. The people who have built the software are now asked

to test the software.

The software developer is always responsible for testing the individual

units (components) of the program, ensuring that each performs the function or

exhibits the behavior for which it was designed. In many cases, the developer

also conducts integration testing—a testing step that leads to the construction

(and test) of the complete software architecture. Only after the software

architecture is complete does an independent test group become involved.

The role of an independent test group (ITG) is to remove the inherent

problems associated with letting the builder test the thing that has been built.

Independent testing removes the conflict of interest that may otherwise be

present. The developer and the ITG work closely throughout a software project

to ensure that thorough tests will be conducted. While testing is conducted, the

developer must be available to correct errors that are uncovered.

Software Testing Strategy—The Big Picture

The software process may be viewed as the spiral illustrated in following

figure. Initially, system engineering defines the role of software and leads to

software requirements analysis, where the information domain, function,

behavior, performance, constraints, and validation criteria for software are

established. Moving inward along the spiral, you come to design and finally to

coding. To develop computer software, you spiral inward (counter clockwise)

along streamlines that decrease the level of abstraction on each turn.

Software Engineering (R20) –Unit IV Page 3

Fig : Testing Strategy

A strategy for software testing may also be viewed in the context of the

spiral. Unit testing begins at the vortex of the spiral and concentrates on each

unit of the software as implemented in source code. Testing progresses by

moving outward along the spiral to integration testing, where the focus is on

design and the construction of the software architecture. Taking another turn

outward on the spiral, you encounter validation testing, where requirements

established as part of requirements modeling are validated against the software

that has been constructed. Finally, you arrive at system testing, where the

software and other system elements are tested as a whole.

Considering the process from a procedural point of view, testing within

the context of software engineering is actually a series of four steps that are

implemented sequentially. The steps are shown in following figure. Initially,

tests focus on each component individually, ensuring that it functions properly as

a unit. Hence, the name unit testing. Unit testing makes heavy use of testing

techniques that exercise specific paths in a component’s control structure to

ensure complete coverage and maximum error detection.

Next, components must be assembled or integrated to form the complete

software package. Integration testing addresses the issues associated with the

dual problems of verification and program construction. Test case design

techniques that focus on inputs and outputs are more prevalent during

integration, although techniques that exercise specific program paths may be

used to ensure coverage of major control paths. After the software has been

integrated (constructed), a set of high-order tests is conducted. Validation

criteria must be evaluated. Validation testing provides final assurance that

software meets all informational, functional, behavioral, and performance

requirements.

Software Engineering (R20) –Unit IV Page 4

Fig : Software testing steps

The last high-order testing step falls outside the boundary of software

engineering and into the broader context of computer system engineering.

Software, once validated, must be combined with other system elements (e.g.,

hardware, people, databases). System testing verifies that all elements mesh

properly and that overall system function/performance is achieved.

Criteria for Completion of Testing

“When are we done testing—how do we know that we’ve tested enough?”

Sadly, there is no definitive answer to this question, but there are a few

pragmatic responses and early attempts at empirical guidance.

One response to the question is: “You’re never done testing; the burden

simply shifts from you (the software engineer) to the end user.” Every time the

user executes a computer program, the program is being tested.

Although few practitioners would argue with these responses, you need

more rigorous criteria for determining when sufficient testing has been

conducted. The clean room software engineering approach suggests statistical

use techniques that execute a series of tests derived from a statistical sample of

all possible program executions by all users from a targeted population.

. By collecting metrics during software testing and making use of existing

software reliability models, it is possible to develop meaningful guidelines for

answering the question: “When are we done testing?”

STRATEGIC ISSUES
Tom Gilb argues that a software testing strategy will succeed when software testers:

 Specify product requirements in a quantifiable manner long before

testing commences. Although the overriding objective of testing is to find

errors, a good testing strategy also assesses other quality characteristics such

as portability, maintainability, and usability. These should be specified in a way

that is measurable so that testing results are unambiguous.

Software Engineering (R20) –Unit IV Page 5

 State testing objectives explicitly. The specific objectives of testing

should be stated in measurable terms.

 Understand the users of the software and develop a profile for each user

category. Use cases that describe the interaction scenario for each class of

user can reduce overall testing effort by focusing testing on actual use of the

product.

 Develop a testing plan that emphasizes “rapid cycle testing.” Gilb

recommends that a software team “learn to test in rapid cycles The feedback

generated from these rapid cycle tests can be used to control quality levels

and the corresponding test strategies.

 Build “robust” software that is designed to test itself. Software should be

designed in a manner that uses anti bugging techniques. That is, software

should be capable of diagnosing certain classes of errors. In addition, the

design should accommodate automated testing and regression testing.

 Use effective technical reviews as a filter prior to testing. Technical reviews

can be as effective as testing in uncovering errors.

 Conduct technical reviews to assess the test strategy and test cases

themselves. Technical reviews can uncover inconsistencies, omissions, and

outright errors in the testing approach. This saves time and also improves

product quality.

 Develop a continuous improvement approach for the testing process. The

test strategy should be measured. The metrics collected during testing should

be used as part of a statistical process control approach for software testing.

TEST STRATEGIES FOR CONVENTIONAL SOFTWARE
A testing strategy that is chosen by most software teams falls between the

two extremes. It takes an incremental view of testing, beginning with the testing

of individual program units, moving to tests designed to facilitate the integration

of the units, and culminating with tests that exercise the constructed system.

Each of these classes of tests is described in the sections that follow.

Unit Testing

Unit testing focuses verification effort on the smallest unit of software

design. The unit test focuses on the internal processing logic and data structures

within the boundaries of a component. This type of testing can be conducted in

parallel for multiple components.

Software Engineering (R20) –Unit IV Page 6

Unit-test considerations. Unit tests are illustrated schematically in following

figure. The module interface is tested to ensure that information properly flows

into and out of the program unit under test. Local data structures are examined

to ensure that data stored temporarily maintains its integrity during all steps in an

algorithm’s execution. All independent paths through the control structure are

exercised to ensure that all statements in a module have been executed at least

once. Boundary conditions are tested to ensure that the module operates

properly at boundaries established to limit or restrict processing. And finally, all

error-handling paths are tested.

Fig : Unit Test

Selective testing of execution paths is an essential task during the unit

test. Test cases should be designed to uncover errors due to erroneous

computations, incorrect comparisons, or improper control flow.

Boundary testing is one of the most important unit testing tasks. Software

often fails at its boundaries. That is, errors often occur when the nth element of

an n-dimensional array is processed, when the ith repetition of a loop with I

passes is invoked, when the maximum or minimum allowable value is

encountered.

A good design anticipates error conditions and establishes error-handling

paths to reroute or cleanly terminate processing when an error does occur.

Yourdon calls this approach anti bugging.

Among the potential errors that should be tested when error handling is

evaluated are: (1) error description is unintelligible, (2) error noted does not

correspond to error encountered, (3) error condition causes system intervention

prior to error handling, (4) exception-condition processing is incorrect, or (5)

error description does not provide enough information to assist in the location of

Software Engineering (R20) –Unit IV Page 7

the cause of the error.

Unit-test procedures. Unit testing is normally considered as an adjunct

to the coding step. The design of unit tests can occur before coding begins or

after source code has been generated.

The unit test environment is illustrated in following figure.. In most applications

a driver is nothing more than a “main program” that accepts test case data,

passes such data to the component (to be tested), and prints relevant results.

Stubs serve to replace modules that are subordinate (invoked by) the component

to be tested.

Unit testing is simplified when a component with high cohesion is

designed. When only one function is addressed by a component, the number of

test cases is reduced and errors can be more easily predicted and uncovered.

Integration Testing

Integration testing is a systematic technique for constructing the software

architecture while at the same time conducting tests to uncover errors associated

with interfacing. The objective is to take unit-tested components and build a

program structure that has been dictated by design.

There is often a tendency to attempt non incremental integration; that is,

to construct the program using a “big bang” approach. All components are

combined in advance. The entire program is tested as a whole. If a set of errors is

encountered. Correction is difficult because isolation of causes is complicated by

the vast expanse of the entire program. Once these errors are corrected, new ones

appear and the process continues in a seemingly endless loop.

Incremental integration is the antithesis of the big bang approach. The

program is constructed and tested in small increments, where errors are easier to

isolate and correct; interfaces are more likely to be tested completely; and a

systematic test approach may be applied. There are two different incremental

integration strategies:

Top-down integration. Top-down integration testing is an incremental

approach to construction of the software architecture. Modules are integrated by

moving downward through the control hierarchy, beginning with the main

control module (main program). Modules subordinate to the main control

module are incorporated into the structure in either a depth-first or breadth-

first manner. Referring to the following figure, depth-first integration

integrates all components on a major control path of the program structure. For

Software Engineering (R20) –Unit IV Page 8

example, selecting the left-hand path, components M1, M2 , M5 would be

integrated first. Next, M8 or M6 would be integrated. Then, the central and

right-hand control paths are built. Breadth-first integration incorporates all

components directly subordinate at each level, moving across the structure

horizontally. From the figure, components M2, M3, and M4 would be integrated

first. The next control level, M5, M6, and so on, follows.

Fig : Top-down integration

The integration process is performed in a series of five steps:

1. The main control module is used as a test driver and stubs are

substituted for all components directly subordinate to the main

control module.

2. Depending on the integration approach selected (i.e., depth

or breadth first), subordinate stubs are replaced one at a time

with actual components.

3. Tests are conducted as each component is integrated.

4. On completion of each set of tests, another stub is replaced with the real

component.

5. Regression testing (discussed later in this section) may be

conducted to ensure that new errors have not been introduced.

Bottom-up integration. Bottom-up integration testing, as its name implies,

begins construction and testing with atomic modules (i.e., components at the

lowest levels in the program structure). Because components are integrated from

the bottom up, the functionality provided by components subordinate to a given

level is always available and the need for stubs is eliminated. A bottom-up

integration strategy may be implemented with the following steps:

Software Engineering (R20) –Unit IV Page 9

1. Low-level components are combined into clusters (sometimes

called builds) that perform a specific software sub function.

2. A driver (a control program for testing) is written to coordinate

test case input and output.

3. The cluster is tested.

4. Drivers are removed and clusters are combined moving

upward in the program structure.

Integration follows the pattern illustrated in following figure. Components are

combined to form clusters 1, 2, and 3. Each of the clusters is tested using a driver

(shown as a dashed block). Components in clusters 1 and 2 are subordinate to

Ma. Drivers D1 and D2 are removed and the clusters are interfaced directly to

Ma. Similarly, driver D3 for cluster 3 is removed prior to integration with

module Mb. Both Ma and Mb will ultimately be integrated with component Mc,

and so forth.

Fig : Bottom-up integration

As integration moves upward, the need for separate test drivers lessens. In fact,

if the top two levels of program structure are integrated top down, the number of

drivers can be reduced substantially and integration of clusters is greatly

simplified.

Regression testing. Regression testing is the re execution of some subset of

tests that have already been conducted to ensure that changes have not

propagated unintended side effects. Regression testing helps to ensure that

changes do not introduce unintended behavior or additional errors.

Regression testing may be conducted manually, by re executing a subset

of all test cases or using automated capture/playback tools. Capture/playback

tools enable the software engineer to capture test cases and results for

subsequent playback and comparison. The regression test suite (the subset of

Software Engineering (R20) –Unit IV Page 10

tests to be executed) contains three different classes of test cases:

• A representative sample of tests that will exercise all software functions.

• Additional tests that focus on software functions that are likely to

be affected by the change.

• Tests that focus on the software components that have been changed.

As integration testing proceeds, the number of regression tests can grow quite large.

Smoke testing. Smoke testing is an integration testing approach that is

commonly used when product software is developed. It is designed as a pacing

mechanism for time-critical projects, allowing the software team to assess the

project on a frequent basis. In essence, the smoke- testing approach encompasses

the following activities:

1. Software components that have been translated into code are integrated

into a build. A build includes all data files, libraries, reusable modules,

and engineered components that are required to implement one or more

product functions.

2. A series of tests is designed to expose errors that will keep the build

from properly performing its function. The intent should be to uncover

“showstopper” errors that have the highest likelihood of throwing the

software project behind schedule.

3. The build is integrated with other builds, and the entire product (in its

current form) is smoke tested daily. The integration approach may be

top down or bottom up.

Smoke testing provides a number of benefits when it is applied on complex,

time critical software projects:

• Integration risk is minimized. Because smoke tests are conducted

daily, incompatibilities and other show-stopper errors are uncovered

early, thereby reducing the likelihood of serious schedule impact when

errors are uncovered.

• The quality of the end product is improved. Because the approach is

construction (integration) oriented, smoke testing is likely to uncover

functional errors as well as architectural and component-level design

errors. If these errors are corrected early, better product quality will

result.

• Error diagnosis and correction are simplified. Like all integration

testing approaches, errors uncovered during smoke testing are likely to be

Software Engineering (R20) –Unit IV Page 11

associated with “new software increments”—that is, the software that has

just been added to the build(s) is a probable cause of a newly discovered

error.

• Progress is easier to assess. With each passing day, more of the

software has been integrated and more has been demonstrated to work.

This improves team morale and gives managers a good indication that

progress is being made.

TEST STRATEGIES FOR OBJECT-ORIENTED SOFTWARE

Unit Testing in the OO Context

When object-oriented software is considered, the concept of the unit

changes. Encapsulation drives the definition of classes and objects. This means

that each class and each instance of a class packages attributes (data) and the

operations that manipulate these data. An encapsulated class is usually the focus

of unit testing.

Class testing for OO software is the equivalent of unit testing for

conventional software. Unlike unit testing of conventional software, which tends

to focus on the algorithmic detail of a module and the data that flow across the

module interface, class testing for OO software is driven by the operations

encapsulated by the class and the state behavior of the class.

Integration Testing in the OO Context

There are two different strategies for integration testing of OO systems.

The first, thread-based testing, integrates the set of classes required to respond

to one input or event for the system. Each thread is integrated and tested

individually. Regression testing is applied to ensure that no side effects occur.

The second integration approach, use-based testing, begins the construction of

the system by testing those classes (called independent classes) that use very few

(if any) serverclasses. After the independent classes are tested, the next layer of

classes, called dependent classes, that use the independent classes are tested.

Cluster testing is one step in the integration testing of OO software. Here, a

cluster of collaborating classes is exercised by designing test cases that attempt

to uncover errors in the collaborations.

Software Engineering (R20) –Unit IV Page 12

TEST STRATEGIES FOR WEBAPPS

The strategy for WebApp testing adopts the basic principles for all

software testing and applies a strategy and tactics that are used for object-

oriented systems. The following steps summarize the approach:

1. The content model for the WebApp is reviewed to un cover errors.

2. The interface model is reviewed to ensure that all use cases can be

accommodated.

3. The design model for the WebApp is reviewed to uncover navigation errors.

4. The user interface is tested to uncover errors in presentation

and/or navigation mechanics.

5. Each functional component is unit tested.

6. Navigation throughout the architecture is tested.

7. The WebApp is implemented in a variety of different

environmental configurations and is tested for compatibility with

each configuration.

8. Security tests are conducted in an attempt to exploit vulnerabilities

in the WebApp or within its environment.

9. Performance tests are conducted.

10. The WebApp is tested by a controlled and monitored population of

end users. The results of their interaction with the system are evaluated

for content and navigation errors, usability concerns, compatibility

concerns, and WebApp reliability and performance.

VALIDATION TESTING

Validation testing begins at the culmination of integration testing, when

individual components have been exercised, the software is completely

assembled as a package, and interfacing errors have been uncovered and

corrected.

Validation can be defined in many ways, but a simple definition is that

validation succeeds when software functions in a manner that can be reasonably

expected by the customer.

Validation-Test Criteria

Software validation is achieved through a series of tests that demonstrate

conformity with requirements. After each validation test case has been

conducted, one of two possible conditions exists: (1) The function or

Software Engineering (R20) –Unit IV Page 13

performance characteristic conforms to specification and is accepted or (2) a

deviation from specification is uncovered and a deficiency list is created.

Configuration Review

An important element of the validation process is a configuration review. The

intent of the review is to ensure that all elements of the software configuration

have been properly developed, are cataloged, and have the necessary detail to

bolster the support activities. The configuration review, sometimes called an

audit

Alpha and Beta Testing

When custom software is built for one customer, a series of acceptance tests are

conducted to enable the customer to validate all requirements. Conducted by the

end user rather than software engineers, an acceptance test can range from an

informal “test drive” to a planned and systematically executed series of tests. In

fact, acceptance testing can be conducted over a period of weeks or months,

thereby uncovering cumulative errors that might degrade the system over time.

The alpha test is conducted at the developer’s site by a representative

group of end users. The software is used in a natural setting with the developer

“looking over the shoulder” of the users and recording errors and usage

problems. Alpha tests are conducted in a controlled environment.

The beta test is conducted at one or more end-user sites. Unlike alpha

testing, the developer generally is not present. Therefore, the beta test is a “live”

application of the software

in an environment that cannot be controlled by the developer. The customer

records all problems that are encountered during beta testing and reports these to

the developer at regular intervals.

A variation on beta testing, called customer acceptance testing, is

sometimes performed when custom software is delivered to a customer under

contract. The customer performs a series of specific tests in an attempt to

uncover errors before accepting the software from the developer.

Software Engineering (R20) –Unit IV Page 14

SYSTEM TESTING

System testing is actually a series of different tests whose primary

purpose is to fully exercise the computer-based system. Although each test has a

different purpose, all work to verify that system elements have been properly

integrated and perform allocated functions.

Recovery Testing

Recovery testing is a system test that forces the software to fail in a

variety of ways and verifies that recovery is properly performed. If recovery is

automatic (performed by the system itself), re initialization, check pointing

mechanisms, data recovery, and restart are evaluated for correctness. If recovery

requires human intervention, the mean-time-to-repair (MTTR) is evaluated to

determine whether it is within acceptable limits.

Security Testing

Security testing attempts to verify that protection mechanisms built into a

system will, in fact, protect it from improper penetration. During security testing,

the tester plays the role(s) of the individual who desires to penetrate the system.

Good security testing will ultimately penetrate a system. The role of the system

designer is to make penetration cost more than the value of the information that

will be obtained.

Stress Testing

Stress tests are designed to confront programs with abnormal situations.

Stress testing executes a system in a manner that demands resources in abnormal

quantity, frequency, or volume. For example, (1) special tests may be designed

that generate ten interrupts per second, when one or two is the average rate, (2)

input data rates may be increased by an order of magnitude to determine how

input functions will respond, (3) test cases that require maximum memory or

other resources are executed, (4) test cases that may cause thrashing in a virtual

operating system are designed, (5) test cases that may cause excessive hunting

for disk-resident data are created.

A variation of stress testing is a technique called sensitivity testing.

Sensitivity testing attempts to uncover data combinations within valid input

classes that may cause instability or improper processing.

Performance Testing

Performance testing is designed to test the run-time performance of

software within the context of an integrated system. Performance testing occurs

Software Engineering (R20) –Unit IV Page 15

throughout all steps in the testing process. Even at the unit level, the performance

of an individual module may be assessed as tests are conducted. Performance

tests are often coupled with stress testing and usually require both hardware and

software instrumentation.

Deployment Testing

Deployment testing, sometimes called configuration testing, exercises

the software in each environment in which it is to operate. In addition,

deployment testing examines all installation procedures and specialized

installation software (e.g., “installers”) that will be used by customers, and all

documentation that will be used to introduce the software to end users.

INTERNAL AND EXTERNAL VIEWS OF TESTING

Any engineered product can be tested in one of two ways: (1) Knowing the specified

function that a product has been designed to perform, tests can be conducted that

demonstrate each function is fully operational while at the same time searching for errors

in each function. (2) Knowing the internal workings of a product.

The first test approach takes an external view and is called black-box testing. The

second requires an internal view and is termed white-box testing.

Black-box testing alludes to tests that are conducted at the software interface. A black-

box test examines some fundamental aspect of a system with little regard for the internal

logical structure of the software.

White-box testing of software is predicated on close examination of procedural detail.

Logical paths through the software and collaborations between components are tested by

exercising specific sets of conditions and/or loops.

WHITE-BOX TESTING

White-box testing, sometimes called glass-box testing, is a test-case design philosophy

that uses the control structure described as part of component-level design to derive test

cases.

Using white-box testing methods, you can derive test cases that

1) guarantee that all independent paths within a module have been exercised at least

once,

2) exercise all logical decisions on their true and false sides,

3) execute all loops at their boundaries and within their operational bounds ,and

4) exercise internal data structures to ensure their validity.

Software Engineering (R20) –Unit IV Page 16

BASIS PATH TESTING
Basis path testing is a white-box testing technique first proposed by Tom McCabe. The

basis path method enables the test-case designer to derive a logical complexity measure

of a procedural design and use this measure as a guide for defining a basis set of

execution paths. Test cases derived to exercise the basis set are guaranteed to execute

every statement in the program at least one time during testing.

Flow Graph Notation

A simple notation for the representation of control flow, called a flow graph (or program

graph). The flow graph depicts logical control flow using the notation illustrated in

following figure.

Fig : Flow Graph Notation

To illustrate the use of a flow graph, consider the procedural design representation in

following figure (a). Here, a flowchart is used to depict program control structure. Figure

(b) maps the flowchart into a corresponding flow graph.

Referring to figure (b), each circle, called a flow graph node, represents one or more

procedural statements. A sequence of process boxes and a decision diamond can map into

a single node. The arrows on the flow graph, called edges or links, represent flow of

control and are analogous to flowchart arrows. An edge must terminate at a node, even if

the node does not represent any procedural statements. Areas bounded by edges and

nodes are called regions. When counting regions, we include the area outside the graph

as a region Each node that contains a condition is called a predicate node and is

characterized by two or more edges emanating from it

Software Engineering (R20) –Unit IV Page 17

Fig : (a) Flowchart and (b) flow graph

Independent Program Paths

An independent path is any path through the program that introduces at least one new set

of processing statements or a new condition. When stated in terms of a flow graph, an

independent path must move along at least one edge that has not been traversed before

the path is defined. For example, a set of independent paths for the flow graph illustrated

in figure (b) is

Path 1: 1-11

Path 2: 1-2-3-4-5-10-1-11

Path 3:1-2-3-6-8-9-10-1-11

Path 4:1-2-3-6-7-9-10-1-11

Note that each new path introduces a new edge. The path

1-2-3-4-5-10-1-2-3-6-8-9-10-1-11 is not considered to be an independent path because it

is simply a combination of already specified paths and does not traverse any newedges.

How do you know how many paths to look for? The computation of cyclomatic

complexity provides the answer. Cyclomatic complexity is a software metric that

provides a quantitative measure of the logical complexity of a program. When used in the

context of the basis path testing method, the value computed for cyclomatic complexity

defines the number of independent paths in the basis set of a program and provides you

with an upper bound for the number of tests that must be conducted to ensure that all

statements have been executed at least once.

Cyclomatic complexity has a foundation in graph theory and provides you with an

extremely useful software metric. Complexity is computed in one of three ways:

1. The number of regions of the flow graph corresponds to the cyclomatic complexity.

2. Cyclomatic complexity V(G) for a flow graph G is defined as

V(G) = E –N+2 ;

where E is the number of flow graph edges and N is the number of flow graph nodes.

3. Cyclomatic complexity V(G) for a flow graph G is also defined as

Software Engineering (R20) –Unit IV Page 18

V(G) = P+1

where P is the number of predicate nodes contained in the flow graph G.

Referring once more to the flow graph in figure (b), the cyclomatic complexity can be

computed using each of the algorithms just noted:

1. The flow graph has fourregions.

2. V(G) = 11 edges - 9 nodes + =4.

3. V(G) = 3 predicate nodes + 1 =4.

Therefore, the cyclomatic complexity of the flow graph in figure (b) is 4.

Deriving Test Cases

The basis path testing method can be applied to a procedural design or to source code.

The following steps can be applied to derive the basis set:

1. Using the design or code as a foundation, draw a corresponding flow graph.

2. Determine the cyclomatic complexity of the resultant flow graph.

3. Determine a basis set of linearly independent paths.

4. Prepare test cases that will force execution of each path in the basis set.

Graph Matrices

The procedure for deriving the flow graph and even determining a set of basis paths is

amenable to mechanization. A data structure, called a graph matrix, can be quite useful

for developing a software tool that assists in basis path testing.

A graph matrix is a square matrix whose size (i.e., number of rows and columns) is equal

to the number of nodes on the flow graph. Each row and column corresponds to an

identified node, and matrix entries correspond to connections (an edge) between nodes. A

simple example of a flow graph and its corresponding graph matrix is shown in following

figure.

Fig : Graph Matrix

Referring to the figure, each node on the flow graph is identified by numbers, while each

edge is identified by letters. A letter entry is made in the matrix to correspond to a

connection between two nodes. For example, node 3 is connected to node 4 by edge b. To

Software Engineering (R20) –Unit IV Page 19

this point, the graph matrix is nothing more than a tabular representation of a flow graph.

However, by adding a link weight to each matrix entry, the graph matrix can become a

powerful tool for evaluating program control structure during testing.

The link weight provides additional information about control flow. In its simplest form,

the link weight is 1 (a connection exists) or 0 (a connection does not exist). But link

weights can be assigned other, more interesting properties:

• The probability that a link (edge) will be execute.

• The processing time expended during traversal of a link

• The memory required during traversal of a link

• The resources required during traversal of a link.

BLACK-BOX TESTING

Black-box testing, also called behavioral testing, focuses on the functional requirements

of the software. That is, black-box testing techniques enable you to derive sets of input

conditions that will fully exercise all functional requirements for a program.

Black-box testing is not an alternative to white-box techniques. Rather, it is a

complementary approach that is likely to uncover a different class of errors than white-

box methods. Black-box testing attempts to find errors in the following categories: (1)

incorrect or missing functions, (2) interface errors, (3) errors in data structures or external

database access, 4) behavior or performance errors, and (5) initialization and termination

errors.

Tests are designed to answer the following questions:

• How is functional validity tested?

• How are system behavior and performance tested?

• What classes of input will make good test cases?

• Is the system particularly sensitive to certain input values?

• How are the boundaries of a data class isolated?

• What data rates and data volume can the system tolerate?

• What effect will specific combinations of data have on system operation?

By applying black-box techniques, you derive a set of test cases that satisfy the following

criteria

(1) test cases that reduce, by a count that is greater than one, the number of additional

test cases that must be designed to achieve reasonable testing, and (2) test cases that tell

you something about the presence or absence of classes of errors, rather than an error

associated only with the specific test at hand.

Software Engineering (R20) –Unit IV Page 20

Graph-Based Testing Methods

The first step in black-box testing is to understand the objects that are modeled in

software and the relationships that connect these objects. Once this has been

accomplished, the next step is to define a series of tests that verify “all objects have the

expected relationship to one another”. Stated in another way, software testing begins by

creating a graph of important objects and their relationships and then devising a series of

tests that will cover the graph so that each object and relationship is exercised and errors

are uncovered.

To accomplish these steps, you begin by creating a graph, it is a collection of nodes that

represent objects, links that represent the relationships between objects, node weights

that describe the properties of a node, and link weights that describe some characteristic

of a link.

The symbolic representation of a graph is shown in following figure. Nodes are

represented as circles connected by links that take a number of different forms.

A directed link (represented by an arrow) indicates that a relationship moves in only one

direction. A bidirectional link, also called a symmetric link, implies that the relationship

applies in both directions. Parallel links are used when a number of different

relationships are established between graphnodes.

Fig : Graph Notation

Beizer describes a number of behavioral testing methods that can make use of graphs:

Transaction flow modeling. The nodes represent steps in some transaction, and the links

represent the logical connection between steps .

Finite state modeling. The nodes represent different user-observable states of the

software, and the links represent the transitions that occur to move from state to state.

The state diagram can be used to assist in creating graphs of thistype.

Data flow modeling. The nodes are data objects, and the links are the transformations

that occur to translate one data object into another.

Software Engineering (R20) –Unit IV Page 21

Timing modeling. The nodes are program objects, and the links are the sequential

connections between those objects. Link weights are used to specify the required

execution times as the program executes.

Equivalence Partitioning

Equivalence partitioning is a black-box testing method that divides the input domain of a

program into classes of data from which test cases can be derived. Test-case design for

equivalence partitioning is based on an evaluation of equivalence classes for an input

condition. Using concepts introduced in the preceding section, if a set of objects can be

linked by relationships that are symmetric, transitive, and reflexive, an equivalence class

is present.

Equivalence classes may be defined according to the following guidelines:

1. If an input condition specifies a range, one valid and two invalid equivalence classes

are defined.

2. If an input condition requires a specific value, one valid and two invalid equivalence

classes are defined.

3. If an input condition specifies a member of a set, one valid and one invalid

equivalence class are defined.

4. If an input condition is Boolean, one valid and one invalid class are defined.

Boundary Value Analysis

A greater number of errors occurs at the boundaries of the input domain rather than in the

“center.” It is for this reason that boundary value analysis (BVA) has been developed as

a testing technique. Boundary value analysis leads to a selection of test cases that

exercise bounding values.

Boundary value analysis is a test-case design technique that complements equivalence

partitioning. Rather than selecting any element of an equivalence class, BVA leads to the

selection of test cases at the “edges” of the class. Rather than focusing solely on input

conditions, BVA derives test cases from the output domain as well.

Guidelines for BVA are similar in many respects to those provided for equivalence

partitioning:

1. If an input condition specifies a range bounded by values a and b, test cases should be

designed with values a and b and just above and just below a and b.

2. If an input condition specifies a number of values, test cases should be developed that

exercise the minimum and maximum numbers. Values just above and below minimum

and maximum are also tested.

3. Apply guidelines 1 and 2 to output conditions.

Software Engineering (R20) –Unit IV Page 22

4. If internal program data structures have prescribed boundaries, be certain to design a

test case to exercise the data structure at its boundary. Most software engineers intuitively

perform BVA to some degree.

Orthogonal Array Testing

Orthogonal array testing can be applied to problems in which the input domain is

relatively small but too large to accommodate exhaustive testing. The orthogonal array

testing method is particularly useful in finding region faults—an error category

associated with faulty logic within a software component.

Orthogonal array testing enables you to design test cases that provide maximum test

coverage with a reasonable number of test cases

	VERIFICATION AND VALIDATION:
	SOFTWARE TESTING STRATEGIES:
	Verification: “Are we building the product right?”
	Validation: “Are we building the right product?”
	Software Testing Strategy—The Big Picture
	Fig : Testing Strategy
	Fig : Software testing steps
	Criteria for Completion of Testing
	STRATEGIC ISSUES
	TEST STRATEGIES FOR CONVENTIONAL SOFTWARE
	Unit Testing
	Fig : Unit Test
	Integration Testing
	Fig : Top-down integration
	Fig : Bottom-up integration

	TEST STRATEGIES FOR OBJECT-ORIENTED SOFTWARE
	Unit Testing in the OO Context
	Integration Testing in the OO Context

	TEST STRATEGIES FOR WEBAPPS
	VALIDATION TESTING
	Validation-Test Criteria
	Configuration Review
	Alpha and Beta Testing

	SYSTEM TESTING
	Recovery Testing
	Security Testing
	Stress Testing
	Performance Testing
	Deployment Testing

	INTERNAL AND EXTERNAL VIEWS OF TESTING
	WHITE-BOX TESTING
	BASIS PATH TESTING
	Flow Graph Notation
	Fig : Flow Graph Notation
	Fig : (a) Flowchart and (b) flow graph
	Deriving Test Cases
	Graph Matrices
	Fig : Graph Matrix

	BLACK-BOX TESTING
	Graph-Based Testing Methods
	Fig : Graph Notation
	Equivalence Partitioning
	Boundary Value Analysis
	Orthogonal Array Testing

